Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by Triosephosphate Isomerase

نویسندگان

  • Xiang Zhai
  • Maybelle K. Go
  • AnnMarie C. O’Donoghue
  • Tina L. Amyes
  • Scott D. Pegan
  • Yan Wang
  • J. Patrick Loria
  • Andrew D. Mesecar
  • John P. Richard
چکیده

Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186-3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12-13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial enediolate phosphate intermediate. No products are detected for the LDM-catalyzed isomerization reactions in D2O of [1-(13)C]GA and HPi, but the L6RM-catalyzed reaction in the presence of 0.020 M dianion gives a 2% yield of the isomerization product [2-(13)C,2-(2)H]GA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase

The side chains of Y208 and S211 from loop 7 of triosephosphate isomerase (TIM) form hydrogen bonds to backbone amides and carbonyls from loop 6 to stabilize the caged enzyme-substrate complex. The effect of seven mutations [Y208T, Y208S, Y208A, Y208F, S211G, S211A, Y208T/S211G] on the kinetic parameters for TIM catalyzed reactions of the whole substrates dihydroxyacetone phosphate and d-glycer...

متن کامل

Enzyme Architecture: Remarkably Similar Transition States for Triosephosphate Isomerase-Catalyzed Reactions of the Whole Substrate and the Substrate in Pieces

Values of (k(cat)/K(m))GAP for triosephosphate isomerase-catalyzed reactions of (R)-glyceraldehyde 3-phosphate and k(cat)/K(HPi)K(GA) for reactions of the substrate pieces glycolaldehyde and HPO3(2-) have been determined for wild-type and the following TIM mutants: I172V, I172A, L232A, and P168A (TIM from Trypanosoma brucei brucei); a 208-TGAG for 208-YGGS loop 7 replacement mutant (L7RM, TIM f...

متن کامل

Structure–Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase

Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M(-1) s(-1)) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M(-2) s(-1)] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison ...

متن کامل

Triosephosphate isomerase deficiency: historical perspectives and molecular aspects.

In this chapter, the original descriptions and pre-molecular studies of triosephosphate isomerase (TPI) deficiency are summarized, and the molecular aspects of the disease presented. The gene is well characterized, and several mutations have been described. Structure-function studies have led to an increased understanding of impaired catalysis. All kindreds that have been studied with the predo...

متن کامل

Enzyme relaxation in the reaction catalyzed by triosephosphate isomerase: detection and kinetic characterization of two unliganded forms of the enzyme.

Triosephosphate isomerase has been shown to exist in two unliganded forms, one of which binds and isomerizes (R)-glyceraldehyde 3-phosphate and the other of which binds and isomerizes dihydroxyacetone 3-phosphate. The tracer perturbation method of Britton demonstrates the kinetic significance of the interconversion of these two enzyme forms at high substrate concentrations and yields a rate con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014